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Abstract—Acyclic conjugated (E,Z,E,FE)-tetraenes, upon thermolysis, undergo a domino pericyclic process involving 67 electro-
cyclisation of the (E,Z,E)-triene moiety to give the corresponding cis-disubstituted 5-vinyl-1,3-cyclohexadienes, followed by an intra-

molecular Diels—Alder reaction with the vinyl side chain to give tricyclo[3.2.1.0%7Joct-3-enes.

© 2007 Elsevier Ltd. All rights reserved.

Upon thermolysis, acyclic conjugated (E,Z,Z, E)-tetra-
enes typically undergo a conrotatory 8m electro-
cyclisation to a cyclooctatriene, often followed by a
disrotatory 67 electrocyclisation to a bicyclo[4.2.0]oct-
adiene (Path A, Fig. 1).! Such periselectivity for Wood-
ward-Hoffmann processes which involve the longest
part of the conjugated system is not absolute, but is
dependent upon the reaction conditions and the polyene
substitution. Thus, the same (E,Z,Z,FE)-tetraene can also
be viewed as an (E,Z,Z)-triene conjugated to an (E)-
alkene, and as such is capable of undergoing a disrotatory
6m electrocyclisation to a 5-vinyl-1,3-cyclohexadiene,??

reaction to give a tricyclo[3.2.1.0%"Joct-3-ene,* as has
been reported® (Path B, Fig. 1). Isomerisation of one
of the inner Z olefinic bonds of the (E,Z,Z, E)-tetraene
to the E configuration should preclude adoption of a
conformation suitable for 8n electrocyclisation, forcing
the alternative 67 process to prevail (Fig. 1). We exam-
ine here the occurrence of pericyclic reactions in such
acyclic conjugated (FE,Z,E,E)-tetraenes (cf. Figs. 1 and
3).

We have previously shown that a sterecochemically
related (E,Z,E,Z)-tetraene, that is, the 7E,9Z,11E,13Z-

followed by an intramolecular Diels—Alder (IMDA) hexadeca-7,9,11,13-tetraene shown in Figure 2,
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Figure 1. Pericyclic reaction pathways of (E,Z,Z,E)- and (E,Z,E,E)-tetraenes (solid arrows show established pathways, dashed arrows show potential

pathways).
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Figure 2. 6m Electrocyclisation of an (E,Z,E,Z)-tetraene.

undergoes thermal electrocyclisation to a 5,6-cis-disub-
stituted cyclohexadiene.® This process provides a biomi-
metic precedent for the possible involvement of
‘electrocyclase’ enzymes in the biosynthesis of certain
o-dialkyl-substituted benzenoid microbial products
which lack oxygen functionality on or adjacent to the
aromatic ring. In this case the electrocyclisation is cen-
tred about the 9Z-olefinic bond, the flanking 7F and
11E bonds undergoing disrotatory thermal motion as
predicted by Woodward and Hoffmann.! The conju-
gated 13Z-bond here plays only a spectator role, with
steric hindrance by its Z-substituents preventing its
IMDA reaction with the cyclohexadiene moiety to form
a tricyclo[3.2.1.0%"Joct-3-ene.

The present (E,Z,E,FE)-systems la—c (Fig. 3) would be
expected to yield the 5,6-cis-disubstituted cyclohexadi-
enes 2a—c. These cyclohexadienes, however, carry at last
one vinyl substituent with an E-, not Z, configuration,
and it was unclear whether this E-olefin would undergo
an IMDA reaction. While precedents for such an intra-
molecular cycloaddition of a pendant 5E-olefin in 5,6-
cis-disubstituted cyclohexadienes exist,’>9 the examples
are unrelated to the present systems 2a-c. Molecular
modelling studies indicate that the enthalpy of activa-
tion for the IMDA reaction of cyclohexadiene 2b,
depicted in Figure 3, is almost twice that for the 6m
electrocyclisation by which it is formed.®

Polyenes 1la—c¢ were prepared by Wittig reactions
between (2FE,4F)-hexa-2,4-dienyltriphenylphosphonium
bromide and sorbic aldehyde, crotonaldehyde and
cinnamaldehyde and obtained as 1:1 mixtures of
(Z/E)-stereoisomers about the new double bond (Table
1).7® Immediately prior to thermolysis, the polyenes
were chromatographed to remove any polymer formed
during storage. This gave rise to altered (Z/E)-isomer

Table 1. Preparation of polyenes la-c by Wittig reactions

HSCWCH;PPthF + R\.CHO
LiOEt, EtOH
rt, 17 h
CH
R
1a-c
Entry R Product® Yield® (%)
1 (E)-CH=CHMe la 79
2 Me 1b 49
3 Ph 1c 80

#Polyenes la—c were obtained as 1:1 mixtures of (Z/E)-isomers about
the new double bond.
®Isolated yields.

Table 2. Thermolysis of polyenes 1a—c to tricyclo[3.2.1.0*"Joct-3-enes

3a—c
@\VCHS toluene, 170 °C @\
R sealed tube, 34 h HsC R
1a-c 3a-c
Entry R Z/E Ratio®  Product  Yield® (%)
1 (E)-CH=CHMe 70:30 3a 60° (51)¢
2 Me 67:33 3b 87° (15)d
3 Ph >98:2 3c 17° (16)¢

#Refers to the (Z/E)-ratio of the newly formed double bond.

®Yields are corrected for the amount of (all-E)-isomer present in the
starting material.

¢ Yields based on analytical GC.

dIsolated yields, which are low due to the high volatility of the
compounds.

ratios compared to freshly prepared material (cf. Tables
1 and 2).

(E,E,Z,E,E)-Pentaecne la was the first polyene to be
thermolysed, since symmetry properties should distin-
guish the expected product, the cis-disubstituted cyclo-
hexadiene 2a, from the alternative trans-disubstituted
isomer. Thus, a dilute solution of pentaene la {contain-
ing 30% of the (all-E)-stereoisomer’} was heated in a
sealed tube at 170 °C for 34 h.” Analysis by GC revealed
that essentially all the starting material had reacted to
form one major compound,'” in 60% yield when cor-
rected for the initial presence of the (all-E)-stereoisomer,
the remainder of the starting material presumably
polymerising into non-volatile material not observable
by GC (Table 2).

EI-MS confirmed, as expected, that the major product
was isomeric with the starting material (1a). NMR spec-
troscopy, however, revealed the presence of only two
double bonds and therefore the product was tricyclic.
Thus, the most likely explanation is that the acyclic
(E,E,Z,E,E)-pentaene la upon heating does indeed
undergo disrotatory 6m electrocyclisation of its central
(E,Z,E)-triene moiety to give the corresponding cis-
5,6-disubstituted 1,3-cyclohexadiene 2a,'® followed by
an IMDA reaction®* involving one of its (E)-prop-1-
enyl side chains to give the endo,exo-6,8-disubstituted
tricyclo[3.2.1.0%"Joct-3-ene 3a (cf. Figs. 3 and 4). The
alternative conrotatory 67 electrocyclisation of pentaene
1a would produce the corresponding trans-5,6-disubsti-
tuted cyclohexadiene, whereupon an IMDA reaction
would then form the analogous exo,exo-isomer (not
shown). The Woodward-Hoffmann rules predict the
former reaction sequence.'?

The proposed endo,exo-6,8-disubstituted tricyclo-
[3.2.1.0%"Joct-3-ene structure of the tricyclic diene 3a
was supported by "H NMR spectroscopy, including
selective homonuclear decoupling and 'H,'H-correla-
tion spectroscopy (COSY). In particular, designation
of the propenyl substituent as endo is based on the
COSY contour map where the signal belonging to the
bridgehead proton 5-H shows no correlation whatsoever
to the signal for the allylic proton 8-H (cf. Fig. 4). This
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Figure 3. Pericyclic reactions of (E,Z,E,E)-tetraenes.
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Figure 4. Structure of the endo,exo-6,8-disubstituted tricyclo[3.2.1.0%7]-
oct-3-ene (3a).

lack of vicinal coupling between 5-H and 8-H is charac-
teristic for these compounds when 8-H is oriented
exo,’®!1 and is consistent with a measured dihedral
angle between these protons of 81°, obtained from
the minimised structure computed using molecular

mechanics.!?

As it was now apparent that an IMDA could occur in
these cis-disubstituted cyclohexadienes carrying an E-
olefin substituent, (E,Z,FE,FE)-decatetraene 1b was exam-
ined next, on the premise that the endo,exo-isomer of the
expected thermal product, tricyclooctene 3b, could be
easily distinguished from the symmetrical exo,exo-iso-
mer, lending further support to the proposed pericyclic
cascade. Thus, a dilute solution of tetraene 1b {contain-
ing 33% of the (all-E)-isomer!3} was heated at 170 °C
for 34 h7 and analysed by GC, which revealed that most
of the starting material had reacted to form one major
compound'* in 87% yield when corrected for the initial
presence of the (all-E)-isomer in the starting material
(Table 2). The product of the reaction was confirmed
by a combination of MS and NMR spectroscopy as
endo,exo0-6,8-dimethyltricyclo[3.2.1.0%"Joct-3-ene 3b.®

Finally, similar thermolysis (170 °C for 34 h) of
(E,Z,E,E)-phenylnonatetraene lc gave somewhat differ-
ent results (Table 2). In this case, GC analysis of the
crude reaction products showed that all the starting
material had reacted to form the now expected exo,
endo-6-methyl-8-phenyltricyclo[3.2.1.0*Joct-3-ene 3¢ in
17% yield. Also obtained was a complex mixture of sev-
eral as yet unidentified compounds, which by GC reten-
tion times appeared to be isomeric with product 3c,
together with polymerised material.

In conclusion, acyclic conjugated polyenes containing
an (E,Z E E)-tetraene moiety predominantly undergo
smooth thermal transformation to endo,exo-6,8-disub-
stituted tricyclo[3.2.1.0%Joct-3-enes, via a domino pro-
cess involving a disrotatory 6m electrocyclisation of the
(E,Z,E)-triene moiety of the polyene to give cis-5,6-
disubstituted 1,3-cyclohexadienes, followed by an
IMDA reaction in which the (E)-prop-1-enyl substituent
behaves as a dienophile. This work extends our knowl-

edge of the occurrence of pericyclic processes in acyclic
conjugated polyenes, and may provide an expedient
entry into the tricyclic skeleton present in some complex
natural products.!>
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